/*

The fourth Industrial Revolution, or Industry 4.0, is well underway. Emerging technologies such as artificial intelligence, augmented and virtual reality, wearables and autonomous vehicles are making sizeable advancements and becoming a part of everyday lives and business.

These emerging technologies all create a lot of data, data that needs to be protected. Connected medical devices transmit sensitive patient information and are also responsible for keeping people healthy and alive. Connected power plants and other critical infrastructure transmit sensitive information and are also vulnerable to attacks. The list goes on. Not only are these technologies creating large amounts of data that require protection, they also require protection for the intellectual property (IP) fueling them. Augmented and virtual reality companies are creating helmets and goggles for civil and construction employees straight out of Iron Man. And there are states out there that are not above stealing this kind of IP, which raises the stakes as many of the world’s electronic components come from those states, adding extra pressure to manufacturers to keep devices secure.

This creates two situations where data, whose value is exponential to criminals, needs to be given extra precaution when securing both it and the devices producing and transmitting it, as well as protecting the intellectual property making them work. Data in transit and data at rest in these situations require heightened security through greater encryption and IoT security as well as high-assurance data protection environments to secure it when not in use.

IoT security efforts should focus on developing a dedicated plan to secure the IoT devices, especially given how an IoT architecture — with its disparate protocols, software and hardware — differs from the traditional enterprise network. Integrating IoT devices into enterprise networks will require new risk management strategies and updated operational security strategies with the level of protection for a given asset greatly depending on its use case and the criticality of the application it supports.

It is therefore essential for enterprises to establish a clear vision of the business need for IoT devices, validate the technologies with stakeholders (including security professionals), assess the risks, deepen their technical understanding of how the IoT system really works, and validate system operations and feasibility.

To be most effective, IoT security has to be a shared responsibility. Many security incidents could be avoided if developers and manufacturers were aware of the risks they face on a daily basis, considering not just those that affect IoT devices, but also those that affect the IoT environment as a whole and develop products accordingly. But connected devices are typically designed to be low-cost and built for a single purpose — not with security at the forefront. They often have limited memory and computing power, which means they can’t be protected by traditional endpoint security. Therefore, enterprises must fully vet new IoT devices to understand how much security is built in. For example, the device may have strong embedded encryption, or it may have a USB port. The administrative password might be “password,” providing an open invitation for misuse and abuse.

Finally, it should be noted that is impossible for every IoT system to behave securely at all times within every context. A good rule of thumb and a sound approach for enterprises is to always adopt an evolving security posture.

All IoT Agenda network contributors are responsible for the content and accuracy of their posts. Opinions are of the writers and do not necessarily convey the thoughts of IoT Agenda.

Andrew Howard

Andrew Howard

Chief Technology Officer at Kudelski Security
As the Chief Technology Officer for Kudelski Security, Andrew Howard is responsible for the evolution, development and delivery of the organization’s technology strategy and solution architecture, including selecting and validating third party technologies and managing research, development and labs.
Andrew Howard